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Quantum effects in the noninertial Brownian motion of a particle in a one-dimensional ratchet potential are
treated in the high temperature and weak bath-particle coupling limit by solving a quantum Smoluchowski
equation for the time evolution of the Wigner function in configuration space. In particular, an analytical
expression for the stationary average drift velocity for constant driving forces is presented including quantum
corrections to any order in Planck’s constant. The corresponding frequency response is determined using
continued fractions in both the linear approximation holding for small ac driving amplitude and in the nonlin-
ear regime for arbitrary driving amplitude exhibiting pronounced ac induced frequency dependence of the dc
component of the average drift velocity. Moreover, Shapiro steps are apparent in the dc characteristics for
strong ac driving just as in the dc current-voltage characteristics of a point Josephson junction.
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I. INTRODUCTION

The rectified current of Brownian particles arising from
the combination of an asymmetric, spatially periodic ratchet
potential with an unbiased, undulating stimulus coupled to a
thermal bath has long been of interest, both as an example of
a nonequilibrium system and as a microscopic transport de-
vice since it effectively represents a mechanical diode �1,2�.
The abiding interest in forced thermal ratchets is reflected in
the diversity of papers �1–5� dealing with their transport
properties. In general, such ratchets are characterized by pe-
riodic potentials with broken spatial symmetry, affording the
possibility of extracting a net particle flow from unbiased
�i.e., vanishing on time averaging� driving. The ratchet effect
has been reported experimentally in a variety of physical and
biological systems, which are so small that the thermal noise
cannot be ignored, because the energy barriers to thermal
activation are just a few kT, unlike in the macroscopic world,
where the barriers are effectively infinite �1�. Ratchet effects
have also been widely used to explain the action of motor
proteins and to suggest novel nanomachines, e.g., Brownian
motors, operating far from thermal equilibrium by extracting
energy fluctuations to work against external loads �6�.

Until comparatively recently, the ratchet system has been
studied in the classical limit. Here, the dynamics are gov-
erned by the Langevin equation �7�. This equation is simply
the Newtonian equation of motion of the particle in the
ratchet potential driven by external forces, augmented by sto-
chastic terms describing the interaction with the surrounding
heat bath so that the position and momentum of the particle
now become random variables. The Langevin or stochastic
differential equation is also accompanied by a Fokker-Planck
equation �8� describing the time evolution of the joint prob-
ability density function W�x , p , t� of the representative points
�positions x and momenta p� of the particle in phase space
�x , p�. The representative points are of course the realizations
or the infinite set of random phase-space trajectories gener-
ated by the Langevin equation. In applications to the trans-

lational motion of a point particle, where the Hamiltonian of
the closed system is separable and additive, the Fokker-
Planck equation in the phase space of positions and momenta
is known as the Klein-Kramers equation �8�.

The Klein-Kramers equation is usually solved by expand-
ing the momentum part of the joint phase-space distribution
W�x , p , t� in orthogonal Hermite polynomials of order n,
namely, Hn�p�, where n=0,1 ,2. . ., leading to a partial
differential-recurrence relation for the separation coefficients
�n�x , t� in configuration space x �9�. Expansion of the distri-
bution function in Hermite polynomials is equivalent to tak-
ing the Fourier transform over the momentum distribution,
i.e., calculating the characteristic function of the momentum
�10�. The separation coefficient �0�x , t� is of particular inter-
est as it constitutes the exact configuration space distribution
function. The partial differential-recurrence relation in n gen-
erates an infinite hierarchy of partial differential-recurrence
equations for the configuration space functions, known as
Brinkman’s hierarchy �9,11�. These may be solved recur-
sively in the frequency domain �s� as a continued fraction of
current operators in the coordinate representation or their
equivalent Heisenberg matrices �see Appendix C of Ref. �9��.
For a periodic potential, such as the ratchet however, the
�n�x , t� may be further expanded in a spatial Fourier series
reducing the problem to the solution of a set of ordinary
differential-recurrence relations in the order n of the Hermite
polynomials and q the number of harmonics of the Fourier
series. The hierarchy of recurrence relations in the recurring
numbers n ,q ultimately yields the time behavior of the decay
functions of the system when it is solved by matrix contin-
ued fraction methods in the frequency domain, having first
converted it to a matrix three-term differential-recurrence re-
lation in n. The same hierarchy of ordinary differential-
recurrence equations may be generated by averaging the
Langevin equation over its realizations �x�t� , p�t�� at a time t
in phase space given a point set of initial values �x�t0� , p�t0��,
as described in Ref. �7�. The averaging over the realizations
for the point or sharp set of initial values ultimately yields
the Green’s function or transition probability for the system.
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The solution for other initial conditions, e.g., a Maxwell-
Boltzmann distribution, may be found by taking an average
of the time-dependent solution for sharp initial conditions
over that distribution.

Now, the configuration space distribution function �0�x , t�
and any averages over it include exactly the inertia of the
particles, which in the context of the Brownian motion is
simply another way of stating that the results �e.g., escape
rates� are valid for all ranges of the bath-particle dissipation
as treated classically. The calculations may however be con-
siderably simplified in the noninertial limit, where the dissi-
pative term in the Langevin equation dominates the inertial
term. This amounts to the ansatz that a Maxwellian distribu-
tion of the momenta has set in well before the steady state
distribution of the displacements has been attained. In other
words, the momentum is a fast variable while the position is
a slow variable. The simplification occurs because in the
noninertial limit the coordinate representation �9� of the so-
lution of the hierarchy of recurrence relations for the Laplace
transform �̃n�x ,s� yields, on inversion to the time domain, a
second-order partial differential equation for the configura-
tion space distribution function �0�x , t�, namely, the Smolu-
chowski equation. This equation replaces the inverse Laplace
transform of the continued fraction of current operators oc-
curring in the inertial case which represents an nth order
partial differential equation and is consequently difficult to
solve. In the case of periodic potentials, expansion of the
solution of the Smoluchowski equation in a spatial Fourier
series then leads to an ordinary differential-recurrence rela-
tion, recurring only in the order q of the series. For the re-
sistively shunted junction model �RSJ-model� of the Joseph-
son junction closely related to the ratchet, where the
capacitance is ignored �corresponding to neglecting the iner-
tia in the mechanical analog�, this recurrence relation reduces
to a three-term one. Hence, it may be solved in the frequency
domain using scalar continued fractions yielding the imped-
ance of the junction. In particular, the time-independent so-
lution yields the dc current-voltage characteristics �7�. For
the ratchet potential, however, the scalar recurrence relation
does not in general reduce to a three-term one, rather it re-
duces only to a matrix three-term recurrence relation. Hence,
in order to solve it matrix continued fractions must again be
used, albeit these are considerably simpler than those asso-
ciated with the exact inertial solution as typically only finite
matrices are involved rather than the infinite matrices asso-
ciated with the order n of the Hermite polynomials of the
inertial solution.

In tandem with the study of classical Brownian ratchets,
interest has also focused on extending the ratchet to the
quantum regime, particularly in the context of molecular-
sized physical engines, where it appears that transport prop-
erties such as the average drift velocity are considerably
modified in relation to their classical counterparts �12�. Hith-
erto, quantum ratchets have usually been investigated in the
context of established devices such as the Josephson junction
and a few novel devices such as rocked electron ratchets
�13–16�. A convenient starting point for our discussion is
therefore the analysis of the Josephson junction by Zwerger
�17�. Following an earlier paper on the quantum Brownian
motion in a periodic potential �18�, he used the influence-

functional formalism developed by Feynman and Vernon
�19� combined with the system-plus-bath Hamiltonian of
Caldeira and Leggett �20� to investigate quantum effects in
the dc current-voltage characteristic of a small Josephson
junction. The Caldeira-Leggett Hamiltonian was originally
used to study the macroscopic quantum tunneling of the
phase difference across a Josephson element in an RF-
SQUID ring �20�. This Hamiltonian couples a �tagged� par-
ticle linearly to a bath of harmonic oscillators, e.g., a string
or transmission line at temperature T, which simultaneously
provides both a frictional and a fluctuating force for the par-
ticle and lends itself to quantization.

The path-integral approach above to both the Josephson
junction and the ratchet has, however, the disadvantage that
it is relatively difficult to visualize in terms of the classical
representation as averages of dynamical quantities over
phase-space distributions. An answer is provided by Wign-
er’s phase-space representation of quantum mechanics in
terms of a certain Fourier transform �prompted by the sym-
metries of the Heisenberg-Weyl group of translations� of the
density matrix �21�, so generating a quasiprobability distri-
bution in phase space. This distribution corresponds to the
sum of the diagonal elements of the density matrix and is
called the Wigner function. Here, the c-numbers x , p repre-
sent the corresponding position and momentum quantum op-
erators. The Wigner function evolves according to a quantum
analog of the Liouville equation of classical statistical me-
chanics, which may be solved at high temperatures by means
of perturbation theory in a quantum parameter �
=�2�2 / �24m�, where � is Planck’s reduced constant, �
= �kT�−1 is the fugacity and m is the mass of the particle. The
Wigner function has most of the attributes of a true phase-
space distribution function �22� �for illuminating discussions
see the chapters by Baker and Feynman in Ref. �23��. More-
over, since it is usually determined explicitly via a high tem-
perature perturbation expansion the Wigner function is emi-
nently suited to the study of quantum corrections to classical
distributions, i.e., the semiclassical limit. Indeed, Wigner’s
representation of quantum mechanics �rather than the con-
ventional representations as the probability densities of the
position or momentum, which are simply the marginal prob-
ability density functions of the Wigner distribution� now
known as the Wigner-Moyal quantization �24�, was origi-
nally given for closed thermodynamic systems, the ultimate
purpose being to obtain high temperature quantum correc-
tions to classical thermodynamic equilibrium. Essentially,
Wigner’s ideas comprise the extension of classical methods
to the quantum domain. Thus quantum mechanical observ-
ables, expressed as the trace of the product of the relevant
operator and the density matrix, may be calculated �24� via
the Weyl symbol of that operator by averaging the corre-
sponding classical quantity �c-number� over a quasiprobabil-
ity distribution in phase space. The Wigner representation,
which is simply a particular example of a representation dis-
tribution for systems with symmetries governed by the
Heisenberg-Weyl group �25� alluded to above was later gen-
eralized by Stratonovich to all representation distributions,
which have a classical meaning. Examples are those associ-
ated with the SU�2� rotation group �25�. This approach has
very recently been extended to magnetic spins by Kalmykov
et al. �26�.
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As far as the quantum Brownian motion is concerned,
which involves extending the Wigner representation to open
systems, the necessary phase-space formalism has been es-
tablished by Coffey et al. �9�. They have shown how to ob-
tain c-number master equations, akin to the Fokker-Planck
equation �FPE�, for the evolution of a time-dependent qua-
siprobability distribution �Wigner function� in phase space
incorporating the bath-particle interaction, which describe
high temperature quantum effects. These master equations,
characterized �unlike the FPE� by Kramers-Moyal coeffi-
cients �8� depending on both the derivatives of the potential
and on the momentum, are derived by imposing the Wigner
distribution of the closed system as the equilibrium distribu-
tion. The foregoing ansatz has been vindicated by Dillen-
schneider and Lutz �27� for the particular case of the har-
monic oscillator potential. They have shown quantitatively
that it corresponds to neglecting small terms in the square of
the bath-particle interaction in the equilibrium distribution of
the open system, which is ultimately the meaning of the term
weak interaction in the present context.

Now, the master equations lead to quantum analogs of the
Brinkman equations in configuration space which may be
solved on applying perturbation theory in the quantum pa-
rameter � by continued fraction methods in the frequency
domain in substantially the same way as the Klein-Kramers
equation. Moreover, in the noninertial limit the quantum
Brinkman equations yield just as the classical case a gener-
alization of the Smoluchowski equation for the configuration
space quasiprobability density function in which quantum
effects appear in the diffusion coefficient, while the drift co-
efficient remains unchanged. This equation is similar but not
identical to a quantum Smoluchowski equation originally ob-
tained by Ankerhold et al. �28� from the path-integral formu-
lation of quantum mechanics, insofar as in the latter Smolu-
chowski equation both the drift and the diffusion coefficients
are altered by quantum effects. However, in subsequent pub-
lications �27,29� and in recent books �30,31� it has been ac-
cepted that the equation proposed by Ankerhold et al. �28�
should read the same as that of Coffey et al. �9�. In other
words, quantum effects should appear in the diffusion coef-
ficient alone.

It is the purpose of this paper to demonstrate how the
quantum Smoluchowski equation, derived by extending
Wigner’s formulation of quantum mechanics to open systems
with the stosszahlansatz of Brownian motion �9�, may be
used to study high temperature quantum corrections to the
average drift velocity of the Brownian ratchet in the nonin-
ertial limit as previously accomplished for the Josephson
junction �32,33�. We shall present the dc average drift veloc-
ity both in closed integral form and as an easily computed
continued fraction. Proceeding to the frequency dependent
stationary case, we shall investigate quantum effects in the
frequency dependence of the ac average drift velocity. We
shall consider these effects in both the linear response, valid
for small driving amplitudes, and in the nonlinear response
valid for arbitrary driving amplitude. Furthermore, we shall
demonstrate that the nonlinear response exhibits pronounced
frequency dependence of the dc average drift velocity as well
as Shapiro-like steps in the curve of that quantity versus dc
bias just as the dc current-voltage characteristic of the point

Josephson junction for strong driving current. In determining
the various solutions, we shall describe the alterations which
must be made to the continued fraction as one proceeds from
the stationary state to the linear response and finally to the
nonlinear response. An attractive feature is the similarity of
the fraction for each of the three solutions so that only slight
alterations are required in each case.

II. QUANTUM SMOLUCHOWSKI EQUATION FOR THE
RATCHET POTENTIAL

The master equation for the time evolution of the Wigner
distribution W�x , p , t� in the phase space of positions x and
momenta p of a particle of mass m moving along the x axis
in a potential V�x� is

�W

�t
+

p

m

�W

�x
−

1

i�
�V�x +

i�

2

�

�p
	 − V�x −

i�

2

�

�p
	
W

= M̂DW , �1�

where M̂D is the collision kernel operator. The left-hand side
is simply the quantum analog of the classical Liouville equa-
tion, so that setting the right hand side equal to zero, Eq. �1�
constitutes the evolution �continuity� equation for the Wigner
distribution function in the phase space of the closed system
as originally given by Wigner �21�. He solved this equation
via perturbation theory in � in order to obtain semiclassical
corrections to the Maxwell-Boltzmann distribution. Hence,
classical transition state theory is modified because quantum
effects due to high temperature tunneling near the top of the
barrier lower the effective barrier heights �34�. The right-

hand side of Eq. �1� contains the collision kernel M̂D, respon-
sible for the bath-particle interaction, here the Brownian mo-
tion of the open system. By representing this kernel as a
Kramers-Moyal �8� expansion truncated at the second term
as in the classical Brownian motion and assuming frequency-
independent damping one may calculate by imposing the
Wigner distribution of the closed system as the first approxi-
mation to the equilibrium distribution the Kramers-Moyal
coefficients to any power in �, thus obtaining the explicit
form of the collision kernel, which to second order in � is �9�

M̂DW = �
�

�p
�pW +

m

�
�1 + 2�V� −

2

5
�2�6V�V� + 2�V��2

+ 3V�4�� p2

m
−

5

�
	
� �W

�p

 + ¯ . �2�

Here, �=� /m is a dissipation �damping� parameter charac-
terizing the bath-particle interaction where � is the friction
coefficient. In a quantum mechanical sense, Eq. �1� is valid
in the high temperature and weak coupling limits, i.e., the
correlation time characterizing the heat bath is so short that
one can regard the stochastic process originating in the bath
as Markovian. Furthermore, recalling that the equilibrium
distribution of the open system may in general depend on the
bath-particle interaction �35�, the imposition of the Wigner
distribution of the closed system as the equilibrium distribu-
tion is tantamount to neglecting terms of o��2� in the equi-
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librium distribution of the open system as has been formally
demonstrated for the harmonic oscillator �27�.

Now, either integration of Eq. �1� over p using the explicit

form of M̂D Eq. �2� and proceeding to the noninertial limit
just as Klein and Kramers �9,36� or considering the noniner-
tial limit of the quantum Brinkman hierarchy �9,11� gener-
ated by expanding the momentum dependence of W�x , p , t�
in Hermite polynomials, then leads to the quantum Smolu-
chowski equation for the quasiprobability distribution func-
tion P�x , t�=
−�

� W�x , p , t�dp in configuration space, namely,

�P

�t
=

�

�x
�P

�

�V

�x
+

�

�x
�DP�� , �3�

where D�x� is the diffusion coefficient given by

D�x� =
1

��
�1 + 2�V��x� −

4�2

5
��V��x��2 + 3V��x�V�3��x�

− 3�−1V�4��x�� + ¯	 , �4�

while the drift coefficient −V��x� /� remains as in the classi-
cal case so that an effective potential is not involved. The
corresponding Langevin equation in the Stratonovich inter-
pretation �37� reads

ẋ�t� = −
1

�
�x�V�x�t�� +

�

2
D�x�t��� +��

�
D�x�t����t� ,

�5�

where the dot denotes the time derivative, and ��t� is a ran-
dom force with the Gaussian white-noise properties

��t� = 0, ��t���t�� = �2�/��	�t − t�� .

Here, the overbar means the statistical average over the real-
izations of the random force. Equation �5� may be used as an
approximate description of the kinetics of a quantum Brown-
ian particle in the noninertial limit. One may average Eq. �5�
over its realizations in configuration space to obtain the av-
eraged equation of motion

x̄̇ = �−1�xV�x� �6�

and thus the drift coefficient, coinciding with its classical
counterpart. Now, since the quasiprobability distribution
P�x , t� �cf. Eq. �3�� is simply the trace of the density matrix
operator 
̂, i.e., P�x , t�= �x�
̂�x�, one may calculate quantum
mechanical expectation values just as classical ones, via the
Weyl correspondence,

�Â� = tr�
̂Â� =� A�x�P�x,t�dx , �7�

so allowing one to study the influence of thermal as well as
quantum mechanical fluctuations. In addition to this
classical-like representation of expectation values, a further
advantage of the semiclassical approach is that the classical
definitions of work and heat remain valid allowing direct
extension of fluctuation-dissipation theorems to quantum
systems yielding important insights in the semiclassical limit
�38,39�.

We now specialize Eq. �3� to the quantum Brownian mo-
tion of a particle in a ratchet potential driven by a constant
force a. We consider the one-dimensional, spatially periodic,
V�x�=V�x+L�, asymmetric potential

V�x� = V0�sin�2�x/L� + b1 sin�4�x/L� + b2 sin�6�x/L�� ,

�8�

where the constant V0 determines the barrier height and the
parameters b1 and b2 characterize the spatial asymmetry. In-
troducing the dimensionless variables

2�x/L → x, t/� → t, � = ��L2/4�2,

a�L/2� → a, 8�2�/�L2 → �,

�V�x� → V�x�, �V0 → V0, �9�

the quantum Smoluchowski Eq. �3� then becomes

�

�t
P�x,t� =

�

�x
��V��x� − a�P�x,t� +

�

�x
�D�x�P�x,t��� ,

�10�

where

V�x� = V0�sin x + b1 sin 2x + b2 sin 3x� �11�

and the dimensionless diffusion coefficient is

D�x� = 1 + �V��x� −
�2

5
�V��x�2 + 3�V��x� − a�V�3��x�

− 3V�4��x�� + ¯ . �12�

In passing, we remark that due to the mathematical difficul-
ties involved relatively little attention has been paid to ac
driving forces, where the time-dependent Smoluchowski
equation must be used. In contrast, Brownian-ratchet dynam-
ics have been studied extensively using the time-independent
Smoluchowski equation. For example, current reversals via
manipulation of the ratchet profile have been studied classi-
cally for a two-state Markovian driving force, where the gov-
erning master equation consists of two coupled Smolu-
chowski equations �40�. Similarly, the role of quantum
tunneling and quantum reflection in the enhancement or sup-
pression of the stationary average drift velocity of a quantum
Brownian particle has been studied by Machura et al. �12� to
first order in � using the quantum Smoluchowski equation of
Ankerhold et al. �28�. We note that they regard the diffusion
coefficient in that equation as the leading term in the Taylor
expansion of �1−�V��x��−1 in order to exclude Maxwell-
demon effects. Such an assumption is unnecessary here as
the Wigner approach automatically furnishes the desired ex-
pansion of the diffusion coefficient in powers of � �cf. Eq.
�12��.

In order to lay the groundwork for the study of the time-
dependent case, pertaining to the stationary ac response, we
must first consider the time-independent solution of the
quantum Smoluchowski Eq. �10�, which having been solved
by quadratures will then be used to calculate the average drift
velocity in the slow-switching limit of a symmetric two state
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driving force. We shall also present the average drift velocity
in the form of a continued fraction.

III. STATIONARY AVERAGE DRIFT VELOCITY

The dimensionless quantum Smoluchowski equation in
the stationary state governing the time-independent quantum
Brownian motion of a particle in the ratchet potential with a
constant tilt of arbitrary amplitude a is

�

�x
��V��x� − a�Pst�x� +

�

�x
�D�x�Pst�x��� = 0. �13�

Under stationary conditions, the probability current satisfy-
ing the continuity equation

�tP�x,t� = − �xJ�x,t� ,

must have the constant value J�a�, with the argument a in-
dicating that the current has its origin purely in the tilt.
Hence, from Eq. �13� the constant probability current is

J�a� = − �V��x� − a�Pst�x� −
�

�x
�D�x�Pst�x�� . �14�

The stationary average drift velocity of the particle �ẋ� �cf.
Eq. �6� with V��x� replaced by V��x�−a� is found by averag-
ing the drift terms so that �8�

�ẋ� = − �
0

2�

�V��x� − a�Pst�x�dx , �15�

or, noting Eq. �14�, in terms of the probability current

�ẋ� = �
0

2� �J�a� +
�

�x
�D�x�Pst�x���dx . �16�

Since Pst�x� is bounded and therefore periodic �8�, so that
Pst�x+2��= Pst�x�, we ultimately have

�ẋ� = �
0

2�

J�a�dx = 2�J�a� . �17�

Now, Pst�x� is normalized, i.e., 
0
2�Pst�x�dx=1, so that fol-

lowing the arguments used in Ref. �8� �see Ch. 11� for the
classical case we have by quadratures the analytical result for
the tilt induced probability current

J�a� =
1 − e−2�a

�
0

2�

D�x�−1e−
�x��
x

x+2�

e
�y�dydx

, �18�

where


�x� = �x

D�y�−1�V��y� − a�dy . �19�

Equation �18� was essentially derived by Kramers �36� in the
context of the classical Smoluchowski equation �see also
Ref. �41�� and extended to a tilted cosine potential by Risken
�8�. In like manner, the stationary probability distribution
may be determined from Eq. �14�. We thus have the bounded
distribution �8�

Pst�x� = D�x�−1J�a�e−
�x�

1 − e−2�a �
x

x+2�

e
�y�dy , �20�

where the probability current J�a� serves as a normalizing
constant, analogous to the inverse partition function, Z−1. In
the case of zero tilt �a=0�, where the probability current is
zero, the stationary solution is simply the Wigner equilibrium
distribution in configuration space, which to first order in �
is �9�

Pst�x� = Z−1e−V�x��1 +
�

2
�V��x�2 − 2V��x�� + ¯� , �21�

where Z=
0
2�Pst�x�dx is the partition function. In the original

uncorrected form of the quantum Smoluchowski equation
proposed by Ankerhold et al. �28,29� in which quantum ef-
fects also appear in the drift coefficient, the stationary distri-
bution differs from the Wigner distribution �21� as empha-
sized in Ref. �32�.

Equations �17�–�19� constitute the exact, analytical solu-
tion for the stationary average drift velocity in a potential
V�x� with constant driving force a. For a negative driving
force one finds that �ẋ�−�a�= �ẋ�+�−a� �the subscripts denote
the separate cases of positive and negative amplitude�. We
may thus obtain an expression for the average drift velocity
in the slow-switching limit of a symmetric, two-state, �+a ,
−a� driving force, namely,

�ẋ�ssl = ��ẋ�+�a� + �ẋ�+�− a�� = 2��J�a� + J�− a�� . �22�

We remark that quantum effects in the Brownian ratchet have
been studied in this switching regime, both in the noninertial
case using the original quantum Smoluchowski equation of
Ankerhold et al. �28� and in the inertial case via the
Caldeira-Leggett master equation in phase space �13�. The
right hand side of the Caldeira-Leggett master equation is
often taken to be the same �42� as that of the Fokker-Planck
equation. Thus quantum effects appear in the Liouville term
only, leading in the noninertial limit to the classical Smolu-
chowski equation �unlike in the phase-space master Eq. �1�,
where the Kramers-Moyal coefficients of the kernel �2� con-
tain both the momentum and the derivatives of the potential,
ultimately leading in the noninertial limit to the quantum
Smoluchowski Eq. �3��. Now, in the noninertial case, we
reiterate that adopting the equation of Ankerhold et al.�28�,
Machura et al. �12� regard the diffusion coefficient in that
equation as the leading term in the Taylor expansion of �1
−�V��x��−1 in order that the second law of thermodynamics
is not violated �see the inset of Fig. 1 of Ref. �12��. Further-
more, quantum noise enters in two places, via an effective
potential and via an effective diffusion coefficient defined
using the Taylor series expansion above. In contrast, in the
quantum Smoluchowski equation used here the potential is
the same as the classical case, while the expansion of the
diffusion coefficient �12� in powers of � is a consequence of
the perturbation theory solution. Thus, the unphysical net
particle current at zero tilt is automatically eliminated. This
is exemplified by the graph of the stationary average drift
velocity in the slow-switching limit �ẋ�ssl vs the amplitude of
the two-state driving force �tilt� a, which we plot in Fig. 1 for
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the ratchet potential V0=−2, b1=0.25 and b2=0 �see right
inset� by means of Eqs. �17�–�19�. We include for compari-
son both the classical result ��=0� and the prediction of
Machura et al. �12� to first order in � only. It is immediately
apparent that besides eliminating the undesirable Maxwell-
demon behavior �see left inset� the quantum Smoluchowski
equation used here results in a smaller reduction in the aver-
age drift velocity due to quantum effects than that of Ref.
�12�. By way of illustration of the convergence of the pertur-
bation theory in �, we show in Fig. 2 for the ratchet potential
V0=1, b1=0.5, and b2=0.5, in which the harmonics are rela-
tively prominent �see right inset� the dependence of the av-
erage drift velocity �ẋ�ssl on the two state driving amplitude a

for various values of the quantum parameter, �=0 �curve 1,
classical limit�, �=0.02 �curves 2� and �=0.04 �curves 3�.
Clearly as � increases the higher order terms in the diffusion
coefficient must be included in order to achieve satisfactory
convergence.

We have presented the stationary solution as obtained in
integral form by quadratures. However, that solution may
also be obtained via Fourier’s theorem using continued frac-
tions, which are particularly suited to the numerical evalua-
tion of the Fourier coefficients. Moreover, the average drift
velocity may be expressed as a linear combination of these
coefficients. We remark that continued fractions are an effi-
cient method of obtaining the exact stationary solution for ac
driving forces and have the merit that only minor alterations
are required in proceeding from the time-independent sta-
tionary solution to the ac response. Considering the time-
independent solution we make the Fourier expansion

Pst�x� =
1

2�
�

n=−�

�

Cneinx, �23�

where the time-independent coefficients �characteristic func-
tion of the random variable x� are

Cn = �
0

2�

e−inxPst�x�dx = �e−inx�0, �24�

and the zero subscript denotes averaging over the stationary
distribution Pst�x�. For ease of presentation, we write the
continued fraction governing the solution of the quantum
Smoluchowski Eq. �13� to first order in � only. Thus, sub-
stituting the Fourier expansion Eq. �23� into Eq. �13�, we
obtain the recurrence relation of the Cn to first order in � as

�ia + n�Cn −
1

2
iV0��1 + n��Cn+1 + �1 − n��Cn−1� − ib1V0��1

+ 2n��Cn+2 + �1 − 2n��Cn−2� −
3

2
ib2V0��1 + 3n��Cn+3

+ �1 − 3n��Cn−3� = 0. �25�

The solution of this seven-term recurrence relation for the
Fourier coefficients via matrix continued fractions is given in
Appendix A. By orthogonality, using Eq. �15� the stationary
average drift velocity of the particle �ẋ�0 is then given by the
following linear combination of Fourier coefficients:

�ẋ�0 = a − V0 Re�C1 + 2b1C2 + 3b2C3� . �26�

IV. LINEAR AC RESPONSE OF THE QUANTUM
BROWNIAN RATCHET

Essentially, the same continued fraction as that resulting
from Eq. �25� may be used to study quantum effects in the
frequency dependence of the average drift velocity of the
Brownian ratchet. Thus, we suppose that the ratchet is driven
�in addition to the tilt a� by an unbiased ac force of ampli-
tude a� and dimensionless angular frequency �. Hence, we
require the time-dependent distribution P�x , t�. This may
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FIG. 1. The average drift velocity in the slow-switching limit
�ẋ�ssl vs two-state driving force a for the ratchet potential V0=−2,
b1=0.25, and b2=0 �see right inset�. The quantum case ��=0.02�
for the quantum Smoluchowski Eq. �13� and that of Ref. �12� is
shown along with the classical case ��=0�. In all cases there is zero
probability current �no Maxwell-demon behavior� at zero tilt �see
left inset�.
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again be expanded as the complex Fourier series

P�x,t� =
1

2�
�

n=−�

�

cn�t�einx, �27�

where the Fourier coefficients which determine the charac-
teristic function cn�t� of the displacement x are

cn�t� = �
0

2�

e−inxP�x,t�dx .

Substituting Eq. �27� into Eq. �10�, we find that the cn�t�
satisfy the following ordinary differential-recurrence relation
to first order in �

d

dt
cn�t� + �ian + n2�cn�t� −

inV0

2
��1 + n��cn+1�t�

+ �1 − n��cn−1�t�� − inb1V0��1 + 2n��cn+2�t�

+ �1 − 2n��cn−2�t�� −
3

2
inb2V0��1 + 3n��cn+3�t�

+ �1 − 3n��cn−3�t�� = 0. �28�

Equation �28� reduces to the previous time-independent re-
currence relation �25� by simply omitting the time derivative.
Moreover, it is essentially similar to the recurrence relation
governing the quantum Brownian motion of a particle in a
tilted cosine potential. The solution of that problem has re-
cently been obtained in the context of quantum effects in the
impedance of a Josephson junction �32,33� and long ago in
the classical limit �43,44�.

We now specialize Eq. �28� �valid for arbitrary driving
amplitude a�� to small amplitudes such that a��1. Hence
the ratchet is only weakly perturbed, eliminating the phase
modulation effects arising from the term iancn�t� in Eq. �28�
which gives rise to an infinite number of harmonics in the ac
response and frequency dependence of the dc response �45�.
This procedure allows one to evaluate its linear response
which may be extracted from Eq. �28� via perturbation
theory in the oscillatory part a� of the tilt parameter as fol-
lows. We make the perturbation expansion �which implicitly
assumes that all transients due to the imposition of the ac
driving force have died away and that harmonics of that
force are no longer generated�

cn�t� = Cn + a�cn���ei�t + ¯ , �29�

where the stationary coefficients Cn constitute the zeroth or-
der of perturbation theory and satisfy the time-independent
recurrence Eq. �25�. Moreover, the particular Fourier coeffi-
cient c0���=0, since c0�t�=1 and C0=1. Substituting Eq.
�29� into the recurrence Eq. �28�, with the replacement a
→a+a�ei�t and keeping only terms linear in the perturbation
a�, we have the forced recurrence relation for the Fourier
amplitudes, namely,

�ia + n + i�/n�cn��� −
1

2
iV0��1 + n��cn+1���

+ �1 − n��cn−1���� − ib1V0��1 + 2n��cn+2���

+ �1 − 2n��cn−2���� −
3

2
ib2V0��1 + 3n��cn+3���

+ �1 − 3n��cn−3���� = − iCn. �30�

In Appendix B, we describe the solution of the forced recur-
rence relation �30� via matrix continued fractions, noting that
all the stationary solution coefficients Cn are involved in the
linear approximation. Recalling that the averaged dynamical
equation in the presence of a weak ac force is

�ẋ�0 + �ẋ�1 = a + a�ei�t − ��xV�0 − ��xV�1,

where the zero subscript on the angular brackets denotes the
average in the absence of the ac force, and the subscript 1 the
portion of the average which is linear in a� we have

�ẋ�1 = ����a�ei�t,

where �=��− i�� is the linear dynamic mobility given via
orthogonality by the linear combination of Fourier ampli-
tudes

���� = 1 −
V0

2
�c1��� + c1

��− �� + 2b1�c2��� + c2
��− ���

+ 3b2�c3��� + c3
��− ���� , �31�

where we have noted that cn���=c−n
� �−�� and asterisk de-

notes complex conjugate.
We plot the real and imaginary parts of ���� given by Eq.

�31� as a function of frequency for various values of the
barrier height parameter V0 in Fig. 3 and for various values
of the tilt a in Fig. 4. In Fig. 3 the curves show a pronounced
minimum in ����� and maximum in ����� accompanied by
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FIG. 3. �Color online� The real and imaginary parts of the linear
dynamic mobility �=��− i�� vs angular frequency � in the ratchet
potential b1=0.5 and b2=0.5 �see inset of Fig. 2� for various values
of the barrier height V0=2 �curves 1�, V0=3 �curves 2�,
V0=5�curves 3� and V0=7 �curves 4�, and the constant tilt a=15.
The classical �dashed lines, �=0� and quantum �solid lines, �
=0.02� cases are shown.
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subsidiary minima and maxima at higher frequencies. The
quantum effects which increase the height of the maxima and
shift them to higher frequencies �as in the related problem of
the impedance of the Josephson junction� are most pro-
nounced for moderate barrier heights V0=5. They may be
ascribed to dissipative tunneling at high temperatures near
the top of a barrier created by the ratchet potential, effec-
tively reducing the barrier height and representing a decrease
in the damping factor. The quantum effects are smaller for
the barriers created by the second and third harmonics of the
potential and appear at higher frequencies. This behavior is
replicated in Fig. 4 where the mobility is plotted for various
values of the tilt. Again, as is the experience with the Joseph-
son junction, quantum effects are most prominent at moder-
ate tilts, causing the principal maximum in the imaginary
part to shift to higher frequencies with increasing tilt.

V. NONLINEAR RESPONSE OF THE QUANTUM
BROWNIAN RATCHET

In the previous section we considered the quantum
Brownian ratchet with arbitrary tilt perturbed by a weak al-
ternating force a�ei�t so that a��1. Hence the response is
linear in the first order of perturbation in a�. In order to
calculate the frequency response of the ratchet for arbitrary
driving amplitude a� we must consider the nonlinear solu-
tion. Since we are again concerned with the stationary re-
sponse, where the driving force has been applied for a very
long time, we may ignore transient effects and seek a solu-
tion independent of the initial conditions. Thus, we make the
temporal Fourier expansion

cn�t� = �
k=−�

�

cn
k���eik�t, �32�

where the infinite sum in k accounts for the infinite number
of harmonics of the stimulus produced by the nonlinear char-

acteristics of the Brownian ratchet and the Fourier coeffi-
cients have the property cn

k���=c−n
k��−��=c−n

−k����, because
P�x , t� must be real. The harmonic generating property of the
nonlinear response is particularly obvious if one simply re-
gards Eq. �28� as a differential equation for a linear time-
varying system forced by the recurring terms. The integrat-
ing factor thus involves a time-varying double transcendental
function, which causes phase modulation of the successive
approximations solution. This has been illustrated in detail in
Ref. �46� in connection with the classical treatment of the
Josephson junction in the zero capacitance limit. We remark
that frequency dependence of the dc term is more or less a
universal phenomenon in nonlinear systems driven by alter-
nating forces, occurring in systems as diverse as the Joseph-
son junction, ring-laser gyros, superparamagnetic nanopar-
ticles �7�, and the Kerr-effect response of dipoles in a mean
field potential �47�. In ratchets, the frequency dependence is
due to the ever prevailing modulation of the static character-
istics resulting in loss of phase locking, e.g., the well known
Shapiro steps in the frequency-dependent dc current-voltage
characteristic of the Josephson junction �48�. However, the
frequency-dependent dc response of electric dipoles is inher-
ently simpler than that of the ratchet because the integrating
factor in the sense mentioned above is essentially time in-
variant. The effect of the nonlinearity in this case is to give
rise to amplitude rather than phase modulation �45�.

By substituting Eq. �32� into Eq. �28� and letting the tilt
a→a+a� cos�t, we have the dual-index recurrence relation
for the Fourier amplitudes cn

k���, viz.,

�ia + n + ik�/n�cn
k��� +

1

2
ia��cn

k+1��� + cn
k−1����

−
1

2
iV0��1 + n��cn+1

k ��� + �1 − n��cn−1
k ����

− ib1V0��1 + 2n��cn+2
k ��� + �1 − 2n��cn−2

k ����

−
3

2
ib2V0��1 + 3n��cn+3

k ��� + �1 − 3n��cn−3
k ���� = 0,

�33�

where n and k are integers varying from −� to �, c0
0���=1,

and c0
k���=0 �k�0�. We present the recurrence relation �33�

above in matrix continued fraction form in Appendix C, not-
ing that supermatrices will now be involved as a result of the
dual-indices n and k. Finally, from Eq. �15� �replacing a with
a+a� cos �t� the average drift velocity �ẋ� in the presence of
an alternating force a� cos �t is given by

�ẋ� = a + a� cos �t −
1

2�
�

0

2�

V��x� �
n=−�

�

�
k=−�

�

cn
k���eik�teinxdx .

Substituting the explicit form of the potential, Eq. �11�, and
using orthogonality we have
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b1=0.5 and b2=0.5 for various values of the tilt a=1 �curves 1�,
a=10 �curves 2�, a=15 �curves 3�, a=20 �curves 4� and a=30
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�ẋ� = a + a� cos �t −
V0

2 �
k=−�

�

eik�t�c1
k��� + c−1

k ��� + 2b1c2
k���

+ 2b1c−2
k ��� + 3b2c3

k��� + 3b2c−3
k ���� ,

which may be expanded as

�ẋ� = a − V0 Re�c1
0��� + 2b1c2

0��� + 3b2c3
0����

+ �1 −
V0

a�
�c1

1��� + c−1
1 ��� + 2b1c2

1��� + 2b1c−2
1 ���

+ 3b2c3
1��� + 3b2c−3

1 �����a�

2
ei�t + �1 −

V0

a�
�c1

−1���

+ c−1
−1��� + 2b1c2

−1��� + 2b1c−2
−1��� + 3b2c3

−1���

+ 3b2c−3
−1�����a�

2
e−i�t +

V0

2 �
k=2

�

�eik�t�c1
k��� + c−1

k ���

+ 2b1c2
k��� + 2b1c−2

k ��� + 3b2c3
k��� + 3b2c−3

k ����

+ e−ik�t�c1
−k��� + c−1

−k��� + 2b1c2
−k��� + 2b1c−2

−k���

+ 3b2c3
−k��� + 3b2c−3

−k����� . �34�

The first line of Eq. �34� represents the frequency-dependent
dc term �ẋ�dc, corresponding to the stationary frequency-
independent response Eq. �26�. The next two terms represent
the response at the fundamental frequency and although os-
tensibly of the same form as the linear dynamic mobility Eq.
�31�, differ in principle from it because each Fourier compo-
nent now contains contributions from all other harmonics
�which arise on account of the nonlinear behavior, see Ref.
�45��. The remaining summation represents the infinite num-
ber of harmonics of the driving signal, generated by nonlin-
earity.

We illustrate the frequency dependence of the dc term
�ẋ�dc for various values of the driving amplitude a�, plotted
as a function of the tilt a in Fig. 5 and as a function of the
frequency � in Fig. 6. In Fig. 5, the well known Shapiro
steps �curves 1–4� familiar in the dc current/voltage charac-
teristics of a Josephson junction for strong ac driving are
illustrated. The steps appear as a result of phase modulation
due to nonlinear effects and represent loss of phase locking
�phase slips� at harmonics of the ac driving force. This result
is in marked contrast to the frequency-independent average
dc drift velocity Eq. �26� �curve 0� where the steps do not
exist. The quantum effects are most pronounced as with our
previous experience �32,33� of the Josephson junction for
relatively small values of the driving force �although strong
enough to cause nonlinear behavior� becoming almost imper-
ceptible for very large driving forces, where they tend to be
masked by the nonlinearity. In Fig. 6, we show the frequency
response of the ac-induced average dc mobility. The quan-
tum effects again tend to enhance the ac-induced dc mobility
in comparison with the classical case. They are most pro-
nounced at frequencies corresponding to the ac-induced
peaks in the dc response, increasing the effective peak mo-
bility for moderate driving due to the reduction in damping,
arising from high temperature dissipative tunneling near the
top of a barrier. The quantum effects also cause slower fal-

loffs of the dc response and again become very small as the
amplitude of the driving force is increased due to the mask-
ing effects of the nonlinearity �compare curves 1 and 5 of
Fig. 6�. The behavior at the peak frequencies seems to be
entirely consistent with the effective reduction in damping
due to tunneling mentioned above resulting in increased mo-
bility so enhancing the peaks just as in the Josephson junc-
tion. The same behavior is evident in the imaginary part of
the nonlinear mobility at the fundamental frequency of the
driving force, where once again the maxima in the spectra
are enhanced with the quantum effects being most pro-
nounced for moderate driving as shown in Fig. 7.

VI. CONCLUSIONS

We have demonstrated how the quantum Smoluchowski
equation may be used to calculate the average drift velocity
of a quantum ratchet for wide ranges of the barrier height, tilt
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FIG. 5. �Color online� The frequency-dependent dc term of the
average drift velocity �ẋ�dc vs the tilt a in the ratchet potential V0
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and ac driving parameters. It appears that quantum effects
reduce the average drift velocity in the slow-switching limit
of a two-state driving force in comparison to the classical
case. In general, as far as the frequency response is con-
cerned, the quantum effects modify the spectra of the mobil-
ity. The origin of this phenomenon appears to be due a re-
duction of the barrier height, representing a decrease in the
damping factor and thus an increase in the dynamic mobility
�due to high temperature tunneling near the top of the bar-
rier� over the corresponding classical results for a given bias.
Furthermore, in accordance with previous experience �32,33�
concerning the ac response of the Josephson junction, the
quantum effects are most pronounced for moderate ac driv-
ing forces, generally diminishing with increasing ac ampli-
tude as they now tend to be masked by the extreme nonlinear
behavior. A most interesting additional feature of the nonlin-
ear frequency-dependent dc response to a strong ac driving
force in both the quantum and classical cases is the appear-
ance of Shapiro-like steps �46,48� �due to loss of phase lock-
ing at harmonics of the driving force� in the average dc drift
velocity versus tilt characteristic. This phenomenon is ex-
actly analogous to the Shapiro steps �48� in the dc current/
voltage characteristics of the Josephson junction for strong
ac driving and should be amenable to experimental verifica-
tion as a universal feature of the dc response associated with
strong ac driving of particles in tilted periodic potentials.
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APPENDIX A: STATIONARY SOLUTION—MATRIX
CONTINUED FRACTION SOLUTION OF EQ. (25)

The recurrence relation for the Cn may be represented as
the seven-term recurrence relation

qnCn + qn
+Cn+1 + qn

−Cn−1 + 2b1q2n
+ Cn+2 + 2b1q2n

− Cn−2

+ 3b2q3n
+ Cn+3 + 3b2q3n

− Cn−3 = 0, �A1�

where qn= ia+n and qn
�=−iV0�1�n�� /2. By introducing

the column vectors Cn �which are in general complex�

C�n = � C�3n

C��3n−1�

C��3n−2�
�, n � 1,

with C0= �1� and the property C−n=Cn
� Eq. �A1� may be

rewritten in terms of the inhomogeneous and homogeneous
matrix three-term recurrence relations

Q1
−C0 + Q1C1 + Q1

+C2 = − FC1
� �n = 1� , �A2�

Qn
−Cn−1 + QnCn + Qn

+Cn+1 = 0 �n � 1� . �A3�

where the matrices Qn and Qn
� are given by

Qn = � q3n q3n
− 2b1q2�3n�

−

q3n−1
+ q3n−1 q3n−1

−

2b1q2�3n−2�
+ q3n−2

+ q3n−2
� ,

Qn
+ = �3b2q3�3n�

+ 2b1q2�3n�
+ q3n

+

0 3b2q3�3n−1�
+ 2b1q2�3n−1�

+

0 0 3b2q3�3n−2�
+ � ,

Qn
− = � 3b2q3�3n�

− 0 0

2b1q2�3n−1�
− 3b2q3�3n−1�

− 0

q3n−2
− 2b1q2�3n−2�

− 3b2q3�3n−2�
− � ,

with Q1
− and F defined as

Q1
− = �3b2q9

−

2b1q4
−

q1
− �, F = �0 0 0

0 0 3b2q6
−

0 3b2q3
− 2b1q2

−� .

Introducing matrices Sn=Cn�Cn−1�−1 and �n=Sn�Qn
−�−1 we

then have the solution of the homogeneous Eq. �A3� for
Cn�n�1� in terms of the matrix continued fractions
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FIG. 7. �Color online� The real and imaginary parts of the non-
linear dynamic mobility �=��− i�� vs angular frequency � in the
ratchet potential, V0=5 b1=0.5 and b2=0.5 for various values of the
stimulus amplitude a�=0.01 �curves 1�, a�=5 �curves 2�, a�=10
�curves 3� and a�=15 �curves 4�, and the constant tilt a=15. The
classical �dashed lines, �=0� and quantum �solid lines, �=0.02�
cases are shown. In the limit of a��1 the linear response is repro-
duced, i.e., curves 1 correspond exactly to curves 3 of Fig. 3.
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Cn = �nQn
−�n−1Qn−1

− . . . �2Q2
−C1, �A4�

where �n is the infinite matrix continued fraction defined by
the recurrence equation

�n = �− Qn − Qn
+�n+1Qn+1

− �−1. �A5�

The inhomogeneous Eq. �A2� for the vector C1 then has
solution

C1 = �1�Q1
−C0 + FC1

�� . �A6�

Next, we eliminate by representing the various complex vec-
tors and matrices in terms of their real and imaginary parts
C1=C1�+ iC1�, �1Q1

−=S1�+ iS1�, and �1F=F�+ iF� so obtain-
ing from Eq. �A6� simultaneous equations for the unknowns
C1� and C1� comprising the desired column vector C1, namely

�I − F��C1� − F�C1� = S1�C0, �A7�

�I + F��C1� − F�C1� = S1�C0, �A8�

where I is the unit matrix. Solving Eqs. �A7� and �A8� for C1�
and C1� we have in terms of known matrices

C1� = �I − F� − F��I + F��−1F��−1�S1� + F��I + F��−1S1��C0,

C1� = �I + F� − F��I − F��−1F��−1�S1� + F��I − F��−1S1��C0.

APPENDIX B: LINEAR RESPONSE—MATRIX
CONTINUED FRACTION SOLUTION OF EQ. (30)

In like manner, the eight-term recurrence relation for the
Fourier amplitudes cn���, Eq. �30� can be rearranged as

zn���cn��� + qn
+cn+1��� + qn

−cn−1��� + 2b1�q2n
+ cn+2���

+ q2n
− cn−2���� + 3b2�q3n

+ cn+3��� + q3n
− cn−3���� = − iCn

�B1�

where zn���= ia+n+ i� /n and qn
�=−iV0�1�n�� /2. By in-

troducing column vectors Cn��� and the known stationary
�or zero order of perturbation solution� column vector Cn

0 �as
calculated in Eqs. �A4� and �A6��

C�n��� =�
c�3n�− ��
c�3n���

c��3n−1��− ��

c��3n−1����

c��3n−2��− ��

c��3n−2����
� , C�n

0 = i�
C�3n

C�3n

C��3n−1�

C��3n−1�

C��3n−2�

C��3n−2�

� ,

n � 1,

with C0= �0� and the property C−n���=Cn
��−��, Eq. �B1�

may be written as the inhomogeneous matrix three-term re-
currence relations

Q1C1 + Q1
+C2 = − �C1

0 + FC1
�� �n = 1� , �B2�

Qn
−Cn−1 + QnCn + Qn

+Cn+1 = − Cn
0 �n � 1� . �B3�

The matrices Qn and Qn
� are given by

Qn =�
z3n�− �� 0 q3n

− 0 2b1q2�3n�
− 0

0 z3n��� 0 q3n
− 0 2b1q2�3n�

−

q3n−1
+ 0 z3n−1�− �� 0 q3n−1

− 0

0 q3n−1
+ 0 z3n−1��� 0 q3n−1

−

2b1q2�3n−2�
+ 0 q3n−2

+ 0 z3n−2�− �� 0

0 2b1q2�3n−2�
+ 0 q3n−2

+ 0 z3n−2���

� ,

Qn
+ =�

3b2q3�3n�
+ 0 2b1q2�3n�

+ 0 q3n
+ 0

0 3b2q3�3n�
+ 0 2b1q2�3n�

+ 0 q3n
+

0 0 3b2q3�3n−1�
+ 0 2b1q2�3n−1�

+ 0

0 0 0 3b2q3�3n−1�
+ 0 2b1q2�3n−1�

+

0 0 0 0 3b2q3�3n−2�
+ 0

0 0 0 0 0 3b2q3�3n−2�
+

� ,
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Qn
− =�

3b2q3�3n�
− 0 0 0 0 0

0 3b2q3�3n�
− 0 0 0 0

2b1q2�3n−1�
− 0 3b2q3�3n−1�

− 0 0 0

0 2b1q2�3n−1�
− 0 3b2q3�3n−1�

− 0 0

q3n−2
− 0 2b1q2�3n−2�

− 0 3b2q3�3n−2�
− 0

0 q3n−2
− 0 2b1q2�3n−2�

− 0 3b2q3�3n−2�
−

� ,

with F defined as

F =�
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 3b2q6
−

0 0 0 0 3b2q6
− 0

0 0 0 3b2q3
− 0 2b1q2

−

0 0 3b2q3
− 0 2b1q2

− 0

� .

The solution of Eq. �B3� �see Refs. �7,49� for details� is
given by

Cn = �nQn
−Cn−1 + �n�Cn

0 + �
k=1

� ��
p=1

k

Qn+p−1
+ �n+p	Cn+k

0 
 .

�B4�

Noting that C0= �0�, Eq. �B2� can be solved for C1 yielding

C1 = �1�C1
0 + X1 + FC1

�� , �B5�

where

X1 = �
k=1

� ��
p=1

k

Qp
+�p+1	Ck+1

0 .

Representing the complex vectors and matrices in Eq. �B5�
as C1=C1�+ iC1�, �1�C1

0+X1�=C1
0�+ iC1

0�, and �1F=F�+ iF�,
we can solve for C1� and C1� by equating coefficients to find
in terms of known matrices

C1� = �I − F� − F��I + F��−1F��−1�C1
0� + F��I + F��−1C1

0�� ,

C1� = �I + F� − F��I − F��−1F��−1�C1
0� + F��I − F��−1C1

0�� .

APPENDIX C: NONLINEAR RESPONSE—MATRIX
CONTINUED FRACTION SOLUTION OF EQ. (33)

As before, we represent the dual-index recurrence relation
for the Fourier amplitudes as

zn
k���cn

k��� +
ia�

2
�cn

k+1��� + cn
k−1���� + qn

+cn+1
k ��� + qn

−cn−1
k ���

+ 2b1�q2n
+ cn+2

k ��� + q2n
− cn−2

k ���� + 3b2�q3n
+ cn+3

k ���

+ q3n
− cn−3

k ���� = 0, �C1�

where zn
k���= ia+n+ ik� /n and qn

�=−iV0�1�n�� /2. We
may rewrite the above nine-term recurrence relation as a
seven-term matrix recurrence relation

qncn��� + qn
+cn+1��� + qn

−cn−1��� + 2b1�q2n
+ cn+2���

+ q2n
− cn−2���� + 3b2�q3n

+ cn+3��� + q3n
− cn−3���� = 0,

�C2�

where

cn��� =�
]

cn
−1���

cn
0���

cn
1���
]

� , c0 =�
]

0

1

0

]

� ,

qn =�
� ] ] ] �

¯ zn
−1��� ia�/2 0 ¯

¯ ia�/2 zn
0��� ia�/2 ¯

¯ 0 ia�/2 zn
1��� ¯

� ] ] ] �

� ,

qn
� =�

� ] ] ] �

¯ qn
� 0 0 ¯

¯ 0 qn
� 0 ¯

¯ 0 0 qn
�

¯

� ] ] ] �

� .

Next, we introduce the column vectors Cn

C0 = �c0�, C�n = � c�3n

c��3n−1�

c��3n−2�
�, n � 1,

with the property C−1���=C1
��−�� so that Eq. �C2� may be

rewritten in terms of the solvable matrix three-term recur-
rence relations

Q1
−C0 + Q1C1 + Q1

+C2 = − FC1
� �n = 1� , �C3�

Qn
−Cn−1 + QnCn + Qn

+Cn+1 = 0 �n � 1� . �C4�

The supermatrices Qn and Qn
� are given by
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Qn = � q3n q3n
− 2b1q2�3n�

−

q3n−1
+ q3n−1 q3n−1

−

2b1q2�3n−2�
+ q3n−2

+ q3n−2
� ,

Qn
+ = �3b2q3�3n�

+ 2b1q2�3n�
+ q3n

+

0 3b2q3�3n−1�
+ 2b1q2�3n−1�

+

0 0 3b2q3�3n−2�
+ � ,

Qn
− = � 3b2q3�3n�

− 0 0

2b1q2�3n−1�
− 3b2q3�3n−1�

− 0

q3n−2
− 2b1q2�3n−2�

− 3b2q3�3n−2�
− � ,

with Q1
− and F defined as

Q1
− = �3b2q9

−

2b1q4
−

q1
− � ,

F = �0 0 0

0 0 3b2q6
−f

0 3b2q3
−f 2b1q2

−f
� ,

f =�
� ] ] ] �

¯ 0 0 1 ¯

¯ 0 1 0 ¯

¯ 1 0 0 ¯

� ] ] ] �

� .

The matrix f in the supermatrix F arises because the distri-
bution function must be real meaning in terms of the column
vectors cn��� that c−n���=cn

��−��, which may be rewritten
as c−n���= fcn

����. Equations �C3� and �C4� are formally
identical to Eqs. �A2� and �A3� above, respectively and their
solutions are given in Appendix A.
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